NUMERICAL METHODS

- 1 a let $f(x) = x^3 7x 11$ f(3) = -5 f(4) = 25sign change, f(x) continuous ∴ root b $x_1 = 3.230712$ $x_2 = 3.225651$ $x_3 = 3.226479 = 3.23$ (2dp)
- 3 a f(0.4) = -0.809 f(0.5) = 0.307 sign change, f(x) continuous ∴ root ∴ 0.4 < α < 0.5 b x₁ = 0.468857 x₂ = 0.463841

$$x_2 = 0.165011$$

$$x_3 = 0.465157$$

$$x_4 = 0.464810$$

$$\therefore \alpha = 0.465 \text{ (3dp)}$$

5 **a**
$$f(1.4) = 3.65$$

 $f(1.5) = -0.205$
sign change, $f(x)$ continuous \therefore root
b $e^{5-2x} - x^5 = 0 \implies x^5 = e^{5-2x}$
 $\implies x = (e^{5-2x})^{\frac{1}{5}}$
 $\implies x = e^{1-\frac{2}{5}x}, \ k = \frac{2}{5}$
c $x_1 = 1.491825$
 $x_2 = 1.496711$
 $x_3 = 1.493789 = 1.494$ (3dp)

Answers

- **a** f(4) = -2.29 (3sf) f(5) = 0.829 (3sf)
 - **b** sign change, f(x) continuous \therefore root
 - c $4 \operatorname{cosec} x 5 + 2x = 0$ $2x = 5 - 4 \operatorname{cosec} x$ $x = 2.5 - \frac{2}{\sin x}, a = 2.5, b = -2$ d $x_1 = 4.545973$
 - $x_1 = 4.538018$ $x_2 = 4.528018$ $x_3 = 4.534481 = 4.534 (3dp)$

a

2

- **b** $\cos x x^2 = 0 \implies \cos x = x^2$ the graphs $y = \cos x$ and $y = x^2$ intersect at 2 points, one for x < 0 and one for x > 0 \therefore one negative and one positive real root
- c let $f(x) = \cos x x^2$ f(0.8) = 0.0567 f(0.9) = -0.188sign change, f(x) continuous ∴ root
- **d** $x_1 = 0.834690$ $x_2 = 0.819395$ $x_3 = 0.826235$ $x_4 = 0.823195$ $x_5 = 0.824550$ ∴ root = 0.82 (2dp)
- **a** f(1.3) = -0.341 f(1.4) = 0.383 sign change, f(x) continuous ∴ root
 - **b** $x_1 = 1.331571$
 - $x_2 = 1.354168$
 - $x_3 = 1.346907$
 - $x_4 = 1.349261$
 - **c** 1.35 (3sf)
 - **d** diverges leading to ln of a –ve which is not real

6

page 2

NUMERICAL METHODS

- 7 **a** $f'(x) = 6x^2 + 4$ **b** for all real x, $x^2 \ge 0$ $\Rightarrow 6x^2 + 4 > 0$ \therefore f(x) increasing for all x $\therefore y = f(x)$ only crosses x-axis once so exactly 1 real root
 - c f(1.2) = -0.744 f(1.3) = 0.594sign change, f(x) continuous \therefore root

d
$$x_1 = 1.280579$$

 $x_2 = 1.246945$
 $x_3 = 1.261203$

- $x_4 = 1.255199$
- ∴ root = 1.26 (2dp)
- e f(1.255) = -0.0267f(1.265) = 0.109 sign change, f(x) continuous ∴ root

b
$$x^4 - 5x - 2 = 0 \implies x^4 = 5x + 2$$

the graphs $y = x^4$ and $y = 5x + 2$ intersect
at 2 points, one for $x < 0$ and one for $x > 0$
 \therefore one negative and one positive real root

c
$$x_1 = 1.821160$$

 $x_2 = 1.825524$
 $x_3 = 1.826420$
 $x_4 = 1.826603 = 1.827 (3dp)$

$$\mathbf{d} \quad x^4 - 5x - 2 = 0 \implies x^4 - 5x = 2$$
$$\implies x(x^3 - 5) = 2$$
$$\implies x = \frac{2}{x^3 - 5}, \ a = 2, \ b = -5$$

e $x_1 = -0.394945$ $x_2 = -0.395132$ $x_3 = -0.395125$ ∴ root = -0.3951 (4dp)

a
$$3x + \ln x - x^2 = x \implies \ln x = x^2 - 2x$$

 $\implies x = e^{x^2 - 2x}$
b let $f(x) = 2x + \ln x - x^2$
 $f(0.4) = -0.276$
 $f(0.5) = 0.0569$
sign change, $f(x)$ continuous \therefore root
c $f(2.3) = 0.143$
 $f(2.4) = -0.0845$
sign change, $f(x)$ continuous \therefore root
d $x_1 = 0.472367$
 $x_2 = 0.485973$
 $x_3 = 0.479134$
 $x_4 = 0.482537$

Answers

8

- :. x-coord of A = 0.48 (2dp) e f(0.475) = -0.0201 f(0.485) = 0.0112
 - sign change, f(x) continuous \therefore root