1
a $\operatorname{let} \mathrm{f}(x)=x^{3}-7 x-11$
$\mathrm{f}(3)=-5$
$\mathrm{f}(4)=25$
sign change, $\mathrm{f}(x)$ continuous \therefore root
b $x_{1}=3.230712$
$x_{2}=3.225651$
$x_{3}=3.226479=3.23(2 \mathrm{dp})$

3
a $\mathrm{f}(0.4)=-0.809$
$\mathrm{f}(0.5)=0.307$
sign change, $\mathrm{f}(x)$ continuous \therefore root
$\therefore 0.4<\alpha<0.5$
b $x_{1}=0.468857$
$x_{2}=0.463841$
$x_{3}=0.465157$
$x_{4}=0.464810$
$\therefore \alpha=0.465(3 \mathrm{dp})$
a $\mathrm{f}(1.4)=3.65$
$f(1.5)=-0.205$
sign change, $\mathrm{f}(x)$ continuous \therefore root
b $\mathrm{e}^{5-2 x}-x^{5}=0 \Rightarrow x^{5}=\mathrm{e}^{5-2 x}$
$\Rightarrow \quad x=\left(\mathrm{e}^{5-2 x}\right)^{\frac{1}{5}}$
$\Rightarrow \quad x=\mathrm{e}^{1-\frac{2}{5} x}, \quad k=\frac{2}{5}$
c $x_{1}=1.491825$
$x_{2}=1.496711$
$x_{3}=1.493789=1.494(3 \mathrm{dp})$
$4 \quad \mathbf{a}$
a

b $\cos x-x^{2}=0 \Rightarrow \cos x=x^{2}$
the graphs $y=\cos x$ and $y=x^{2}$ intersect
at 2 points, one for $x<0$ and one for $x>0$
\therefore one negative and one positive real root
c let $\mathrm{f}(x)=\cos x-x^{2}$
$\mathrm{f}(0.8)=0.0567$
$f(0.9)=-0.188$
sign change, $\mathrm{f}(x)$ continuous \therefore root
d $x_{1}=0.834690$
$x_{2}=0.819395$
$x_{3}=0.826235$
$x_{4}=0.823195$
$x_{5}=0.824550$
\therefore root $=0.82(2 \mathrm{dp})$
$2 \quad$ a $\quad \mathrm{f}(4)=-2.29(3 \mathrm{sf})$

$$
f(5)=0.829(3 \mathrm{sf})
$$

b sign change, $\mathrm{f}(x)$ continuous \therefore root
c $4 \operatorname{cosec} x-5+2 x=0$
$2 x=5-4 \operatorname{cosec} x$
$x=2.5-\frac{2}{\sin x}, a=2.5, b=-2$
d $x_{1}=4.545973$
$x_{2}=4.528018$
$x_{3}=4.534481=4.534(3 \mathrm{dp})$
\therefore root $0.82(2 \mathrm{dp})$
$6 \quad$ a $\mathrm{f}(1.3)=-0.341$
$\mathrm{f}(1.4)=0.383$
sign change, $\mathrm{f}(x)$ continuous \therefore root
b $\quad x_{1}=1.331571$
$x_{2}=1.354168$
$x_{3}=1.346907$
$x_{4}=1.349261$
c 1.35 (3 sf)
d diverges leading to \ln of $\mathrm{a}-\mathrm{ve}$ which is not real
a $\mathrm{f}^{\prime}(x)=6 x^{2}+4$
b for all real $x, x^{2} \geq 0$

$$
\Rightarrow \quad 6 x^{2}+4>0
$$

$\therefore \mathrm{f}(x)$ increasing for all x
$\therefore y=\mathrm{f}(x)$ only crosses x-axis once so exactly 1 real root
c $\mathrm{f}(1.2)=-0.744$
$\mathrm{f}(1.3)=0.594$
sign change, $\mathrm{f}(x)$ continuous \therefore root
d $x_{1}=1.280579$
$x_{2}=1.246945$
$x_{3}=1.261203$
$x_{4}=1.255199$
\therefore root $=1.26(2 \mathrm{dp})$
e $f(1.255)=-0.0267$
$f(1.265)=0.109$
sign change, $\mathrm{f}(x)$ continuous \therefore root
$9 \quad \mathbf{a}$

b $x^{4}-5 x-2=0 \Rightarrow x^{4}=5 x+2$
the graphs $y=x^{4}$ and $y=5 x+2$ intersect at 2 points, one for $x<0$ and one for $x>0$
\therefore one negative and one positive real root
c $x_{1}=1.821160$
$x_{2}=1.825524$
$x_{3}=1.826420$
$x_{4}=1.826603=1.827$ (3dp)
d $x^{4}-5 x-2=0 \Rightarrow x^{4}-5 x=2$
$\begin{aligned} & \Rightarrow x\left(x^{3}-5\right)=2\end{aligned}$
$\Rightarrow x=\frac{2}{x^{3}-5}, a=2, b=-5$
e $x_{1}=-0.394945$
$x_{2}=-0.395132$
$x_{3}=-0.395125$
\therefore root $=-0.3951$ (4 dp)
$8 \quad$ a $\quad 3 x+\ln x-x^{2}=x \Rightarrow \ln x=x^{2}-2 x$

$$
\Rightarrow x=\mathrm{e}^{x^{2}-2 x}
$$

b let $\mathrm{f}(x)=2 x+\ln x-x^{2}$
$\mathrm{f}(0.4)=-0.276$
$\mathrm{f}(0.5)=0.0569$
sign change, $\mathrm{f}(x)$ continuous \therefore root
c $\mathrm{f}(2.3)=0.143$
$\mathrm{f}(2.4)=-0.0845$
sign change, $\mathrm{f}(x)$ continuous \therefore root
d $x_{1}=0.472367$
$x_{2}=0.485973$
$x_{3}=0.479134$
$x_{4}=0.482537$
$\therefore x$-coord of $A=0.48$ (2 dp)
e $f(0.475)=-0.0201$
$\mathrm{f}(0.485)=0.0112$
sign change, $\mathrm{f}(x)$ continuous \therefore root

